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Abstract. This paper presents a Genetic Programming (GP) approach
to solving multi-robot path planning (MRPP) problems in single-lane
workspaces, specifically those easily mapped to graph representations.
GP’s versatility enables this approach to produce programs optimizing
for multiple attributes rather than a single attribute such as path length
or completeness. When optimizing for the number of time steps needed
to solve individual MRPP problems, the GP constructed programs out-
performed complete MRPP algorithms, i.e. Push-Swap-Wait (PSW), by
54.1%. The GP constructed programs also consistently outperformed
PSW in solving problems that did not meet PSW’s completeness con-
ditions. Furthermore, the GP constructed programs exhibited a greater
capacity for scaling than PSW as the number of robots navigating within
an MRPP environment increased. This research illustrates the benefits
of using Genetic Programming for solving individual MRPP problems,
including instances in which the number of robots exceeds the number
of leaves in the tree-modeled workspace.

Keywords: Multi-robot path planning · Genetic programming.

1 Introduction

Multi-robot systems offer greater performance than single robot systems at the
cost of addressing issues, including the potential for collisions, bottlenecks, and
traffic jams that can occur when many robots are navigating within confined
or single-lane environments. To address such issues, the problem of Multi-Robot
Path Planning (MRPP) has been explored within many contexts, e.g. [3,7,10]. A
solution to the MRPP problem typically requires the construction of a collision-
free path for each robot having a unique starting location and unique goal lo-
cation within the workspace. In solving this problem, researchers have focused
on developing algorithms that are scalable, complete, and/or optimal (e.g. with
respect to path length) [4,14,16,20,21,23].

This paper focuses on MRPP within the single-lane environments typically
found in mines and warehouses. In these workspaces, fleets of autonomous robots
navigate single lane tunnels; for example, in Fig. 1a, the robots do not have space
to move around each other safely. As in previous work, this research abstracts
such workspaces as minimum spanning trees (see Fig. 1b), in which robot actions
correspond to movement along edges connecting nodes [24].
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(a)

(b)

(c)

Fig. 1: Example of a single-lane tunnel/corridor environment (a). Example of a
single-lane tunnel/corridor environment being represented as a minimum span-
ning tree (b). In (c), a randomly generated MRPP scenario.



Multi-Robot Path Planning Via Genetic Programming 3

This paper presents a Genetic Programming (GP) approach to single-lane
MRPP. GP is an evolutionary algorithm that evolves computer programs as
solutions to problems. Here, a centralized master computer first runs the GP
algorithm offline on a training set of MRPP examples, learns a computer program
that solves these examples, and shares this program with the robots within
the environment. Then, the robots sequentially execute the learned program
in real-time to determine their next actions. Each robot runs this computer
program at each time step until all of the robots have visited their respective
goal destinations. The specific contributions of this paper include:

1. Identification of a set of GP functions and terminals for generating MRPP
programs.

2. A GP algorithm for constructing programs solving MRPP problems.

3. Simulation results illustrating GP performance in solving single MRPP in-
stances and in developing a general MRPP program.

In Section 2, MRPP/GP related research is introduced. Section 3 provides
the problem formulation. In Section 4, a GP algorithm is outlined and its appli-
cation to MRPP explained. In Section 5, the computational complexity of the
GP algorithm is evaluated. Section 6 describes how the GP’s function set and
terminal set were developed. Section 7 documents the experiments performed to
validate the approach. In Section 8, conclusions are presented and future work
is considered.

2 Background

MRPP algorithms can be classified in multiple ways. First, they can be classified
as centralized or decentralized. Centralized MRPP algorithms have a single robot
or central computer plan the paths of all the robots [4,14,16,20]. Decentralized
MRPP algorithms have each individual robot plan its own path [2,7,15,22,29].
MRPP algorithms can also be distinguished by whether they are local or global.
Local MRPP algorithms determine a robot’s next move at each time step whereas
global MRPP algorithms generate a robot’s entire path before it sets off towards
its destination.

Related to multi-robot path planning in graphs is the work on pebble mo-
tion. A pebble motion algorithm aiming to move pebbles around a tree from a
start to goal configuration is shown in [1]. Earlier work also includes [12]. More
recent work [28] presents an algorithm that upper bounds the number of moves
required for moving pebbles around a graph to their goal configuration. Finally,
a polynomial time algorithm for coordinating the motion of labeled discs in high
disc density scenarios [6] is shown to have optimality guarantees.

Recent centralized MRPP approaches include [8], a polynomial time algo-
rithm (SEAR) with expected optimality guarantees in obstacle-free environ-
ments. In [27], MRPP algorithms for optimizing across several metrics (e.g.
makespan, max distance, etc.) are shown to calculate near optimal paths for
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100+ robots in seconds. Other work [17] aims to maximize the number of agents
that can reach their goal under a deadline.

Presented in [24], the Push-Swap-Wait algorithm (PSW) is a decentralized,
local, and topology-based single-lane MRPP algorithm that distinguishes itself
from other MRPP algorithms in that it is complete: it is guaranteed to solve
MRPP problems that meet certain conditions. Unlike most multi-agent path
finding approaches, however, PSW considers an environment solved once each
robot has visited its unique destination. Under this definition, robots do not need
to remain at their destination once solved. Centralized and complete MRPP
algorithms have also been developed [20].

GP has been successfully used to evolve collision avoidance programs for
single robots. The collision avoidance programs generated by the GP in [19] are
structured as trees containing arithmetic and boolean operators. The programs
take in robot sensor readings and return motor speeds.

GP has also been used in MRPP. Kala used Grammar Guided Genetic Pro-
gramming (GGGP) to evolve optimal paths for individual MRPP examples [11].
For a given instance of MRPP, GGGP is run for each robot so that they learn the
best paths to their respective destinations. A master genetic algorithm then op-
timizes across robots, selecting the path for each robot ensuring that the robots
collectively reach their destinations as quickly as possible without colliding.

Evolutionary algorithms other than GP have been used in MRPP. In [18] and
[26], Cooperative Co-evolution is used to generate paths that achieve collision
avoidance in individual MRPP examples. Here, the entities undergoing evolution
are the paths themselves, which is useful in producing environment specific opti-
mal paths. Chakraborty, Konar, Jain, & Chakraborty use Differential Evolution
to generate algorithms for MRPP [5]. In this approach, each robot has its own
path-planning algorithm that evolves. Lastly, Das, Sahoo, Behera, & Vashisht
use Particle Swarm Optimization to generate decentralized and local algorithms
for MRPP [9].

This paper presents a decentralized, local, and topology-based GP approach
to single-lane MRPP. The performance of this approach is compared to PSW.
Similarly to PSW, an environment is considered solved once each robot has
visited its destination. Unlike PSW and the evolutionary algorithms mentioned
above, the GP approach presented in this paper is the first research we know
of that constructs decentralized and scalable single-lane MRPP programs using
GP.

3 Problem Formulation

This research attempts to develop a GP algorithm that can be run offline to con-
struct a solution program ψ∗ to be downloaded to multiple individual robots (see
Fig. 2). Then, each robot can execute ψ∗ to enable collision-free, decentralized
navigation through a given single-lane workspace to its goal destination.

In designing the GP algorithm that constructs ψ∗, it is assumed that the
navigable portions of the workspace are modeled as a fully connected graph,
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1. Running GP Offline 
to learn 𝜓∗

2. Download 𝜓∗

…

3. Online robot navigation using 𝜓∗

Fig. 2: Flowchart showing the interaction between offline and online computation.

which can in turn be represented with a minimum spanning tree T (N,E), com-
posed of a set of nodes, N , connected with a set of undirected edges, E. Recall
that a minimum spanning tree T (N,E) of graph G(N, ε) contains the same set
of nodes N and contains a subset of the edges E ⊆ ε such that all of the nodes
remain connected and there are no cycles. The tree T is occupied by a set of
robots R that are assumed to travel at the same constant speed. Each robot
may traverse an edge during a time step and must occupy a node at the end of
a time step. Only a single robot may occupy a given node at a time.

At each time step t, each robot ri ∈ R runs the GP generated program ψ∗,
which returns the robot’s assignment A(ri, t) ∈ N . Thus, if A(ri, t − 1) = n1
and A(ri, t) = n2, robot ri traverses edge en1→n2 during time step t if n1 6= n2
and en1→n2

∈ E. Each edge e ∈ E is of the same length and takes a single time
step to traverse. An edge can only be traversed by a single robot during a given
time step. Each robot r starts on a unique starting node s(r) ∈ N such that
s(ri) 6= s(rj) if ri 6= rj . Each robot also has a unique destination node g(r) ∈ N
such that g(ri) 6= g(rj) if ri 6= rj .

All robots within ρ nodes of ri in the minimum spanning tree T (N,E) are
considered to be in ri’s direct communication network: c(ri).

Finally, a MRPP problem is considered solved at time ts if ∀ri ∈ R,∃ti|ti ≤ ts
and A(ri, ti) = g(ri). In other words, a MRPP problem is considered solved once
each robot has visited its destination node.

4 Genetic Programming in MRPP

Genetic Programming is an evolutionary algorithm that begins with an initial,
randomly generated population of solution programs. These programs are iter-
atively tested against a set of training examples to evaluate their fitness—how
well they solve the training problems.

The next generation of programs is then produced via asexual reproduction,
genetic crossover, and mutation, whereby more fit solutions are granted a greater
likelihood of surviving the evolutionary process. This leads the population of
solutions to become increasingly fit over the course of generations [13].
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Table 1: The GP function set for MRPP.
Function Description

If-Two-Robots-
On-Each-Others-
Path

Checks whether the current robot ri’s position A(ri, t) is
on the path of another robot rj that belongs to c(ri). Also
checks whether A(rj , t) is on ri’s path. If both conditions
are met, ri and rj each set their paths to the nearest branch
node to ri.

If-Neighbor-Is-
Surrounded

Checks whether the current robot ri is adjacent to another
robot rj that is surrounded—that is, each of rj ’s adjacent
nodes are occupied by a robot.

If-Robot-At-
Branch

Checks whether the current robot ri is at a branch node
that it set its path to.

If-Robot-At-
Destination

Checks whether the current robot ri is at its destination
node g(ri).

If-Robot-Moving-
To-Branch

Checks whether the current robot ri is travelling to a
branch node it has set its path to but hasn’t reached yet.

If-Neighbor-On-
Path-Is-Free

Checks whether the next node on the current robot ri’s
path is free.

If-Robot-Is-
Solved

Checks whether the current robot ri has visited its desti-
nation node g(ri).

If-On-Path-
Of-Robot-In-
Network

Checks whether the current robot ri’s position A(ri, t) is
on the path of another robot rj that belongs to its direct
communication network c(ri).

If-Robot-In-
Network-Moving-
To-Branch

Checks whether a robot rj that belongs to c(ri) is travel-
ling to a branch node.
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4.1 Solution Representation

GP solutions are computer programs that are structured as trees. The inter-
nal nodes in the tree-structured programs are sampled from the function set
F = {f1, f2, ..., fN}, where a function can be an arithmetic/boolean/conditional
operator, mathematical/iterative/recursive function, etc. Here, F includes con-
ditional if-statements relying on information about the environment: e.g. the
positions of robots relative to other robots, the positions of robots relative to
branch nodes, etc. (see Table 1). Whenever a function or terminal requires the
current robot to compute a path from its current node to its destination node
or to a branch node, Dijkstra’s algorithm is used. To note, a branch node is a
node in the minimum spanning tree T (N,E) having 3 or more neighbors.

The leaves in the computer program’s tree structure are sampled from the
terminal set L = {l1, l2, ..., lN} and can be constants, variables, or functions
changing the state of the environment. The terminals used here are actions
dictating a robot’s movement between nodes in the workspace (see Table 2).
Each of the terminals contain a block of code that checks whether execution of
the terminal would result in a collision. If a robot executes a terminal that would
cause it to travel to a node that is already occupied by another robot, this block
of code ensures that the robot stays at its current node in order to prevent a
collision.

Given the programs’ internal nodes are conditional operators, the resulting
solution programs represent decision trees solving MRPP problems (e.g. Fig.
3a-b).

Table 2: The GP terminal set for MRPP.
Terminal Description

Move-Toward-
Branch

The current robot ri moves to the next node on the path
to the branch it has set its path to.

Move-To-Free-
Neighbor

The current robot ri moves to an adjacent node that isn’t
occupied by a robot and that it hasn’t visited before.

Move-Toward-
Objective

The current robot ri moves to the next node on its current
path.

Stay The current robot ri does not move during the time step
and stays at the same node.

4.2 GP Algorithm

In Alg. 1, the GP evolves solution programs solving MRPP problems over
the course of ir runs, each lasting ig generations. At the start of each run,
getInitialPopulation(|P |) is executed (line 4), randomly generating an initial
population of |P | programs, with maximum tree depth 2, composed of the func-
tions and terminals from Table 1 and Table 2. Then, for each generation within
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Algorithm 1 Genetic Programming Adapted for MRPP

Inputs: |P |, ir, ig, X, pa, pc, pm

1: τB ←∞
2: ψ∗ ← None

3: for i← 1 to ir do
4: P ← getInitialPopulation(|P |)
5: for j ← 1 to ig do
6: for k ← 1 to |P | do
7: Fk ← calculateF itness(ψk, X)

8: if Fk = 0 and
∑|X|

n=1 τk,n < τB then

9: τB ←
∑|X|

n=1 τk,n
10: ψ∗ ← ψk

11: end if
12: end for
13: Pa ← asexualReproduction(P, pa)
14: Pc ← geneticCrossover(P, pc)
15: Pm ← mutation(P, pm)
16: P ← Pa ∪ Pc ∪ Pm

17: end for
18: end for
19: return ψ∗

the given run, the GP iterates through each program ψk in the population P
and executes calculateF itness(ψk, X) (line 7). This function runs a given pro-
gram ψk against a set of MRPP training problems X. The time τk,n it takes
program ψk to solve training problem xn is recorded for all programs in P over
all examples in X. If a program ψk solves all of the examples in X in fewer time
steps than the current best program ψ∗, then the minimum number of time steps
taken to solve the examples in X, τB , is updated (line 9) and ψk becomes the new
best program ψ∗ (line 10). At the end of each generation, the next generation’s
population of programs P is produced by running asexualReproduction(P, pa)
with asexual reproduction rate pa (line 13), geneticCrossover(P, pc) with ge-
netic crossover rate pc (line 14), and mutation(P, pm) with mutation rate pm
(line 15). pa, pc, and pm define the proportion of programs in the next gen-
eration that come from asexual reproduction, genetic crossover, and mutation,
respectively. Thus, pa, pc, and pm must sum to 1 so that |P | is constant over the
generations. This iterative process continues for ir runs of ig generations. Once
the final run has ended, the best solution program ψ∗ is returned (line 19).

4.3 Calculating Fitness

To evaluate the quality of a program ψk, it is tested against a set of |X| examples
called the fitness set : X = {x1, x2, ..., x|X|}. Each example xi is a randomly
generated MRPP problem including a minimum spanning tree T and a set of
robots R having unique starting and destination nodes.
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Notably, a program ψk is tested against each example xi until the example
has been solved or the maximum allowable time steps M has been exceeded,
where M = |N |2 ∗ |R|2, |N | is the number of nodes in T , and |R| is the number

of robots. The fitness function to be minimized is defined as Fk =
∑|X|
i=1 fk,i.

Specifically, program ψk’s fitness for training problem xi is:

fk,i =


0 xi is solved
|R|∑
j=1

dist(A(rj ,M), g(rj))
2 otherwise

(1)

where dist(A(rj ,M), g(rj)) returns the number of edges along the shortest path
from rj to g(rj) at time M . A training problem xi can be considered solved but

not have
|R|∑
j=1

dist(A(rj ,M), g(rj))
2 = 0 because a problem is considered solved

once each robot has visited its destination. Robots do not need to remain at
their destinations once they have been visited.

To evolve MRPP programs navigating robots to their destination nodes in as
few time steps as possible, the fitness function calculation only allows a candidate
program a total of τB time steps to solve all of the examples in X. As the GP
evolves, τB is updated to be the minimum number of time steps that has been
found to solve X (line 9).

4.4 Generating New Populations

Once the fitness score has been calculated for each program in the population,
the next generation’s population of programs is created—pa% from asexual re-
production, pc% from genetic crossover, and pm% from mutations. Programs
are selected to undergo these operations with fitness proportionate probability

αk = βk/
∑|P |
j=1 βj , where βk = 1/(1 + Fk).

Asexual Reproduction Each program ψk is copied from the current popula-
tion into the new population with probability αk.

Genetic Crossover Two programs from the current population are chosen
with fitness proportionate probabilities. Then, a crossover point (i.e. a node) is
randomly chosen in both program’s decision trees. The subtrees at the crossover
points are then swapped and reattached at the crossover points to form two new
programs (e.g. Fig. 3c-d) that are added to the new population.

Mutation A program ψk from the current population is selected with proba-
bility αk. Then, as in genetic crossover, a node in the program’s decision tree
is uniformly randomly chosen. The chosen node and its subtree are deleted and
replaced with a randomly generated subtree (e.g. Fig. 3d).
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(a) (b)

(c) (d)

Fig. 3: In (a) and (b), two example programs from a GP population are shown.
In (c) and (d), crossover has been applied to the programs in (a) and (b) with
crossover points shown via dashed boxes. (d) can also be used to demonstrate
mutation, where a mutation point (dashed box) was replaced with a new ran-
domly generated subtree.

5 Computational Complexity

The genetic program returns a single path planning program ψ∗ that is used
by each robot within the environment. At each time step, the robots in the
environment sequentially call ψ∗ to determine their next action. As previously
discussed, ψ∗ has the form of a decision tree. An input parameter to the GP
construction algorithm is dmax, dictating the maximum depth of ψ∗. Thus, when
a robot calls ψ∗ and does a traversal of the decision tree, it traverses a single
branch that consists of at most dmax nodes. This means that at most dmax − 1
functions and 1 terminal are executed by each robot each time step.

To determine the computational complexity of having a single robot call ψ∗ in
a given time step, the most expensive function and terminal must be established
because in the worst case, the most expensive function will be executed dmax−1
times and the most expensive terminal will be executed once. The most expen-
sive function is If-Two-Robots-On-Each-Others-Path and the most expensive
terminal is Move-Toward-Branch.

If-Two-Robots-On-Each-Others-Path has computational complexityO(bρ+
|N |2log(|N |)), where b is the maximum branching factor in the tree T (N,E) and
all robots within ρ nodes of a robot ri in T (N,E) are considered to be in ri’s di-
rect communication network: c(ri). The bρ term comes from having to construct
the current robot’s direct communication network c(ri). If two robots are on each
other’s paths, then the nearest branch node is found. This requires Dijkstra’s al-
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gorithm to be called between ri’s current position A(ri, t) and each branch node.
The computational complexity of Dijkstra’s algorithm is O(E+Nlog(N)) where
E and N are the number of edges and nodes in the graph, respectively. Since
the algorithm is being executed on a tree, E = N − 1. Thus, the computational
complexity of Dijkstra’s algorithm can be rewritten as O(N + Nlog(N)). The
number of branch nodes is upper bounded by the number of nodes |N |. There-
fore, finding the closest branch node to ri has complexity O(|N |2log(|N |)).

Move-Toward-Branch also has computational complexity O(|N |2log(|N |)),
deriving from the requirement of finding the closest branch node to the current
robot ri.

In O(bρ + |N |2log(|N |)), the maximum branching factor b is typically much
smaller than |N | and in our experiments, ρ was set to 2. Therefore, bρ <<
|N |2log(|N |). This leads us to conclude that the computational complexity of
If-Two-Robots-On-Each-Others-Path and Move-Toward-Branch are each
O(|N |2log(|N |)). The computational complexity of executing ψ∗ once is, there-
fore, O((dmax − 1) ∗ (|N |2log(|N |)) + |N |2log(|N |)) or O(dmax|N |2log(|N |)).

6 Developing the Function and Terminal Sets

Developing the GP’s function and terminal sets F and L for solving MRPP
problems involved two phases. In phase one, functions and terminals enabling
robots to swap positions were identified, a key requirement for removing deadlock
in tunnel environments. The three unique MRPP scenarios requiring a swap were
enumerated in [25]. These scenarios have been adapted and described in terms
of robots rA and rB here:

1. rB is on the path from rA to g(rA) and rA is on the path from rB to g(rB)
2. Both rB and g(rB) are on the path from rA to g(rA)
3. rB is on the path from rA to g(rA) and rB ’s neighbors are all occupied by

other robots

These three scenarios were encoded in X to train the GP. The sets F and L
were fine-tuned until the GP was able to find solution programs.

In phase two, function set F and terminal set L were further fine-tuned until
the GP was capable of consecutively solving 100 randomly generated MRPP
problems, each including a randomly constructed minimum spanning tree, oc-
cupied by a random number of robots having unique start and goal locations.
To note, the number of robots was always fewer than the number of tree leaves
(e.g. Fig. 1c). The final function set and terminal set can be found in Table 1
and Table 2, respectively.

7 Experiments

Three sets of experiments were conducted to evaluate GP’s ability to generate
programs for solving MRPP problems. The first set of experiments tested GP’s
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ability to evolve programs for solving individual MRPP problems in the fewest
possible time steps. The second set evaluated GP’s capacity to evolve general
programs for solving problems they were not trained on. The third set tested
GP’s ability to solve MRPP problems where PSW is not guaranteed to work.

In each experiment, a master computer first ran the GP algorithm offline on
a fitness set of MRPP training examples. The GP algorithm was implemented
using the EpochX Java library and was run on a Microsoft Surface Book with an
Intel Core i7-6600U 71 CPU. The GP used a genetic crossover rate of pc = 0.8,
an asexual reproduction rate of pa = 0.1, and a mutation rate of pm = 0.1.
Additionally, the algorithm ran for ir = 5 runs of ig = 400 generations. The
population size was set to |P | = 2000. The program tree depths were bounded
between 1 and 50. After the last run, the GP algorithm returned the learned pro-
gram ψ∗. Then, for each test problem, ψ∗ was shared with each of the robots and
executed online, in real-time, (as illustrated in Fig. 2). The robots sequentially
executed ψ∗ every time step to determine their next action until the problem
was solved or the maximum number of allowable time steps had been reached.

In the plots below, each data point is the average y-value across examples
sharing an x-value. Error bars represent the standard deviation of the y-value.

7.1 Generating Training and Test Examples

Training and test examples were recursively created with the same random min-
imum spanning tree (MST) generator shown in Algorithm 2. The generator was
provided seed values between 4 and 10 to produce training examples and seed
values between 4 and 9 to produce test examples. The maximum branching fac-
tor b was set to 4. Once the MST was generated, it was populated with robots,
each having a unique, random starting node and destination node. In the ex-
periments described in sections 7.2 and 7.3, the number of robots was set to
#leaves − 1 because this is the maximum number of robots for which PSW is
guaranteed to solve an environment. In section 7.4, the number of robots was
set to 0.25, 0.5, 1.0, and 1.5 times the number of leaf nodes.

Algorithm 2 MSTGenerator(root, seed, b)

1: n← random(0, b)
2: for i← 1 to n do
3: newNode← createNode()
4: MSTGenerator(newNode, seed− 1, b)
5: root.addNeighbor(newNode)
6: newNode.addNeighbor(root)
7: end for
8:
9: return root
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7.2 Optimizing for Time in Individual MRPPs

GP programs were evolved to solve individual randomly generated MRPP ex-
amples in the fewest possible time steps. This process was conducted 1000 times.
PSW was run against the same 1000 problems for comparison.

Table 3: GP vs. PSW for individual MRPP problems.
GP Better GP = PSW PSW Better

73.3% 12.1% 14.6%

The results presented in Table 3 show that GP outperformed or tied PSW
in 85.4% of the trials. Furthermore, PSW required 18633 time steps to solve the
1000 examples while GP only needed 8552 time steps to solve the 1000 examples,
a 54.1% improvement. Fig. 4 suggests that GP increasingly outperforms PSW as
the number of robots navigating within an environment increases. Fig. 5 reveals
that GP increasingly outperforms PSW as the # swaps/# robots ratio increases.
In solving individual MRPP problems, then, GP significantly outperforms PSW
and GP exhibits a greater capacity to scale as the number of robots navigating
within an environment increases.

Fig. 4: GP vs PSW when trained/tested on individual MRPPs.

7.3 Generalizing GP to Solve New MRPPs

GP’s capacity to evolve general MRPP programs for solving new problems, on
which they were not trained, is examined next. Trials were conducted where the
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Fig. 5: GP vs PSW when trained/tested on individual MRPPs.

GP evolved based on a set of |X| = 5, 10, or 20 randomly generated training
problems. Next, the learned program was run against a test set of 100 randomly
generated MRPP examples. This process was repeated ten times for each |X|
value (yielding 1000 examples for each |X|) and the results are presented in
Table 4.

These experiments reveal that GP’s ability to produce general programs im-
proves as |X| increases. Despite the improvement, GP was not able to match
PSW’s completeness guarantee. Furthermore, in the problems solved by GP, in-
creasing |X| did not help GP outperform PSW as the percentage of examples
in which GP required fewer time steps remained stable between 30.37% and
36.69%. Fig. 6 reveals that PSW consistently outperforms GP programs over all
problem sizes. However, Fig. 7 suggests that general GP programs outperform
PSW when robots must, on average, perform more swaps.

Table 4: General GP vs. PSW.
|X| # GP Solved % GP Better % GP = PSW % PSW Better

5 695 36.69 11.65 51.65

10 866 30.37 15.24 54.39

20 872 32.80 11.12 56.08
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Fig. 6: GP vs PSW when trained first and then tested on NEW MRPPs.

Fig. 7: GP vs PSW when trained first and then tested on NEW MRPPs.

Table 5: GP vs. PSW Where PSW Is Not Complete.
Leaf Multiplier % GP Solved % PSW Solved

0.25 100 100

0.5 100 100

1.0 82 68.5

1.5 58 34
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7.4 GP vs. PSW Where PSW Is Not Complete

GP’s ability to evolve programs solving individual MRPP problems violating
PSW’s completeness guarantee—examples where |R| ≥ #leaves—is examined
next. Here, 200 trials were conducted in which the number of robots was fixed at
|R| = blm ∗#leavesc, where lm was set to 0.25, 0.5, 1.0, and 1.5, respectively. In
each trial, a GP program was evolved to solve an individual randomly generated
MRPP example and PSW was run against the same problem for comparison.
If |R| > |N | − 2, |R| was set to |N | − 2 because at least two nodes must be
free to enable a swap. In the trials in which PSW’s completeness guarantee was
in effect, both PSW and GP were able to find solutions 100% of the time (see
Table 5). When PSW’s completeness guarantee was violated (|R| = #leaves and
|R| = b1.5 ∗ #leavesc), GP consistently solved more examples than PSW, e.g.
solving 24% more examples when |R| = b1.5 ∗#leavesc.

8 Conclusions and Future Work

This paper presents a decentralized, local GP approach for solving single-lane
MRPP problems. This GP approach facilitates the generation of MRPP pro-
grams that can optimize for various attributes and scenarios. GP effectively
optimizes the number of time steps needed to solve individual MRPP problems,
showing significant improvement over complete algorithms like PSW. GP also
consistently outperforms PSW in solving problems that do not meet PSW’s com-
pleteness conditions. Furthermore, GP exhibits a greater capacity than PSW to
scale as the number of robots navigating within an MRPP environment increases.
This research illustrates the benefits of using GP to generate solutions for in-
dividual MRPP problems, including instances in which the number of robots
exceeds the number of leaves in the tree-modeled workspace. However, attempts
to use GP to produce general MRPP programs could not match PSW’s complete-
ness despite the suggestion that general GP programs do outperform PSW where
robots must perform more swaps. Future work should focus on developing func-
tions and terminals enabling GP to produce more general MRPP programs and
programs that better optimize for time. Additional experiments should reduce
the constraints on the environment by training and testing on general graphs
rather than MSTs. Furthermore, future research should attempt to modify this
GP framework so that the learned program can be executed asynchronously
within the environment. Finally, the programs produced by GP should be im-
plemented on physical robots to better understand the nature of these programs
and to observe where there is room for improvement.
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